一、个人基本情况
李治,男,1980年11月出生,博士研究生,教授。主要研究方向为随机分析与数理金融。主持国家自然科学基金项目一项,主持中国博士后基金一等资助项目一项,主持完成省部级项目多项,参与完成国家自然科学基金面上项目2项,参与完成教育部人文社科规划类项目一项。以第一作者或者通讯作者发表SCI收录论文50余篇,其中一区和二区20余篇。获国家产学研合作创新成果奖三等奖一项。
二、近五年的教学情况及成果
讲授主要课程:高等代数;概率论与数理统计;随机过程;线性代数;随机分析等。多次指导学生参加大学生数学竞赛(专业类)获全国奖和省多项;指导学生参加全国大学生数学建模大赛获全国奖和省多项。
三、近几年的学术研究
科研项目:
1. 国家自然科学基金数学天元项目,生物数学建模的方法及应用--天元数学高级研讨班(12326413)主持在研。
2. 粤港澳国家应用数学中心项目,锰萃取工艺元素含量动态仿真建模(20220179,主持完成。
3. 中国博士后基金一等资助, 中立型随机泛函微分方程的相关研究(2017M610216),主持完成。
4. 湖北省自然科学基金面上项目,分数布朗运动驱动的随机泛函微分方程研究(2016CFB479),主持完成。
5. 湖北省教育厅中青年人才项目,由分形布朗运动驱动的随机时滞微分方程研究 (Q20141306), 主持完成。
6. 国家自然科学基金面上项目,多种噪声驱动的随机耦合时滞神经网络的稳定性与控制 (62076039,第一参与人 在研。
7. 国家自然科学基金面上项目,由分形布朗运动驱动的随机泛函微分方程的研究(11271093),参与完成。
8. 教育部人文社科项目规划类, 混杂跳跃风险模型的最优分红及相关问题, 参与完成。
主要论文:
[1] Zhi Li, Xueqi Wen, Liping Xu, Exponential Stability of uncertain functional differential equations, Applied Soft Computing. 147(2023) 110816.
[2] Zhi Li, Liping Xu, Litan Yan, McKean-Vlasov stochastic differential equations driven by the time-changed Brownian motion, Journal of Mathematical Analysis and Applications. 527(2023)127336.
[3] Zhi Li, Benchen Huang, Jiaxin Zhao, Liping Xu, Transportation inequalities for stochastic differential equations driven by the time-changed Brownian motion, Journal of Dynamical and Control Systems. 29(2023) 1571-1583.
[4] Xueqi Wen, Zhi Li*, Liping Xu, Strong approximation of non-autonomous time-changed McKean–Vlasov stochastic differential equations, Communications in Nonlinear Science and Numerical Simulation. 119 (2023) 107122.
[5] Zhi Li, Yarong Peng, Litan Yan, Harnack inequalities for functional SDES driven by subordinate fractional Brownian motion, Journal of Mathematical Inequalities. 16(4) (2022) 1429-1453.
[6] Zhi Li, Qinyi Long, Liping Xu, Xueqi Wen, h-stability for stochastic Volterra-Levin equations, Chaos, Solitons and Fractals. 164 (2022) 112698.
[7] Zhi Li, Liping Xu, Exponential Stability in Mean Square of Neutral Stochastic Functional Differential Equations, Journal of Mathematical Research with Applications.42(4) (2022) 413-426.
[8] Zhi Li, Liping Xu, Xianping He, Viability for Mixed Stochastic Differential Equations Driven by Fractional Brownian Motion, ADVANCES IN MATHEMATICS (CHINA). 52 (3) (2022) .
[9] Zhi Li, Liping Xu, Wen Ma, Global attracting sets and exponential stability of stochastic functional differential equations driven by the time-changed Brownian motion, Systems and Control Letters. 160 (2022) 105103.
[10] Zhi Li, Haiqing Qu, Liping Xu, Litan Yan, Viability for mixed stochastic differential equations driven by fractional Brownian motion and its application, Applicable Analysis. 102(20232) 3315-3339.
[11] Xueqi Wen, Zhi Li*, Almost sure stability of stochastic theta methods with random variable stepsize for stochastic differential equations, International Journal of Control. 96(2022) 1151-1167.
[12] Zhi Li, Litan Yan, Liping Xu, Harnack Inequalities for Functional SDES Driven by Subordinate Multifractional Brownian Motion, Mathematical Inequalities and Applications. 24 (2021) 1149-1166.
[13] Liu Bian, Zhi Li*, Fuzzy simulation of European option pricing using sub-fractional Brownian motion, Chaos, Solitons and Fractals. 153(2021), 111442.
[14] Zhi Li, Liping Xu, Exponential Stability in Mean Square of Stochastic Functional Differential Equations with Infinite Delay, Acta Applicandae Mathematicae. 174, 8 (2021).
[15] Yuanbin Ma, Zhi Li*, Perturbed uncertain differential equations and perturbed reflected canonical process, AIMS MATHEMATICS. 2021, Volume 6, Issue 9: 9647-9659.
[16] Zhi Li, Liping Xu, Litan Yan, Global attracting set, exponential stability and stability in distribution of SPDEs with jumps, Nonlinear Analysis: Hybrid Systems. 41(2021) 101056.~~~~1区\\[2mm]
[17] YuanYuan Jing, Zhi Li*, Averaging Principle for Backward Stochastic Differential Equations, DISCRETE DYNAMICS IN NATURE AND SOCIETY. (2021) 6615989 DOI: 10.1155/2021/6615989.
[18] Zhi Li, Liping Xu, Viability for Coupled SDEs Driven by Fractional Brownian Motion, Applied Mathematics and Optimization. 84, pages55-98 (2021).
[19] Zhi Li, Liping Xu, Liguang Xu, Global attracting sets and exponential stability of stochastic partial functional differential equations, Systems and Control Letters. 148(2021) 104859.
[20] Wentao Zhan, Yuanyuan Jing, Liping Xu, Zhi Li*, Transportation Inequalities for Coupled Fractional Stochastic Evolution Equations Driven by Fractional Brownian Motion, DISCRETE DYNAMICS IN NATURE AND SOCIETY. (2020) 8213976 DOI: 10.1155/2020/8213976.
[21] Weiguo Liu, Jiang Yan, Zhi Li*, Rate of convergence of Euler approximation of time-dependent mixed SDEs driven by Brownian motions and fractional Brownian motions, AIMS MATHEMATICS, 5(3), 2020, 2163-2195.
[22] Zhi Li, Liping Xu, Almost automorphic solutions for stochastic differential equations driven by Levy
noise, Physical A: Statistical Mechanics and its Applications, 5451 (2020) 122964.
[23] Zhi Li, Liping Xu, Litan Yan, Global Attracting Set and Exponential Decay of Coupled Neutral SPDEs Driven by Fractional Brownian Motion, Stochastics: An International Journal Of Probability And Stochastic Processes,10.1080/17442508.2019.1697270.
[24] Zhi Li, Yuanyuan Jing, Liping Xu, Controllability of Neutral Stochastic Evolution Equations Driven by fBm with Hurst Parameter Less Than 1/2. International Journal of Systems Science, 50 (9)(2019) 1835-1846.
[25] Zhi Li, Wentao Zhan, Liping Xu, Stochastic differential equations with time-dependent coefficients driven by fractional Brownian motion, Physical A: Statistical Mechanics and its Applications, 530 (2019) 121565.
[26] Zhi Li, On the existence of solutions for stochastic differential equations driven by fractional Brownian motion, Filomat, 33, 6 (2019) 1695-1700.
[27] Zhi Li, Litan Yan, Stochastic averaging for two-time-scale stochastic partial differential equations with fractional Brownian motion, Nonlinear Analysis: Hybrid Systems, 31: 317-333, 2019.
[28] Zhi Li, Liping Xu, Litan Yan, Weak solutions for stochastic differential equations with additive fractional noise, Stochastic and Dynamics, 19 (2), 2019, 1950017.
[29] Liping Xu, Zhi Li*, Stochastic fractional evolution equations with fractional Brownian motion and infinite delay, Applied Mathematics and Computation, 336: 36-46, 2018.
[30] Zhi Li, Litan Yan, Ergodicity and stationary solution for stochastic neutral retarded partial differential equations driven by fractional Brownian motion, Journal of Theoretical Probability, 32(3): 1399-1419, 2019.
[31] Zhi Li, Litan Yan, Xianghui Zhou, Global attracting sets and stability of neutral stochastic functional differential equations driven by Rosenblatt process, Frontiers of Mathematics in China, 13(1): 87-105, 2018.
[32] Zhi Li, Litan Yan, Harnack Inequalities for SDEs Driven by Subordinator Fractional Brownian Motion, {\bf Statistics and Probability Letters, 134: 45-53, 2018.
[33] Xianghui Zhou, Jun Yang, Zhi Li, Dongbing Tong, p-th Moment synchronization of Markov switched neural networks driven by fractional Brownian noise, Neural Computing and Applications, 29: 823-836, 2018.
[34] Zhi Li, Liping Xu, Litan Yan, Stepanov-like almost automorphic solutions for stochastic differential equations with Levy noise, Communications in Statistics Theory and Methods, 47(6): 1350-1371, 2018.
[35] Zhi Li, Wei Zhang, Stability in distribution of Stochastic Volterra-Levin equations, Statistics and Probability Letters, 22: 20-27, 2017.
[36] Zhi Li, Kai Liu: Global Attracting Set, Exponential Decay and Stability in Distribution of Neutral SPDEs Driven by alpha-stable Processes, Discrete and Continuous Dynamical Systems B, 21(10): 3551-3573, 2016.
[37] Zhi Li, Liping Xu, Xiong Li: On Time-Dependent Neutral Stochastic Evolution Equations with a Fractional Brownian Motion and Infinite Delays, Bulletin of the Iranian Mathematical Society, 42(6): 479-1496, 2016.
[38] Xianghui Zhou, Yang Jun, Zhi Li, Stability analysis based on partition trajectory approach for switched neural networks with fractional Brown noise disturbance, International Journal of Control, 90 (10) 2017.
[39] Zhi Li, Global attractiveness and quasi-invariant sets of impulsive neutral stochastic functional differential equations driven by fBm, Neurocomputing, 177: 620-627, 2016.
[40] Zhi Li, Shift Harnack inequality and integration by parts formula for functional SDEs driven by fractional Brownian motion, Proceedings of the American Mathematical Society, 144: 2651-2659, 2016.
[41] Zhi Li, Guoli Zhou, Jiaowan Luo, Stochastic delay evolution equations driven by sub-fractional Brownian motion, Advances in Difference Equations, (2015) 2015:48.
[42] Liping Xu, Zhi Li*, Jiaowan Luo, Global attracting set and exponential decay of second-order neutral stochastic functional differential equations driven by fBm, Advances in Difference Equations, (2017) 2017:134.
[43] Zhi Li, Jiaowan Luo, Barrier reflected backward doubly stochastic differential equations with discontinuous generators, Advances In Mathematics(China), (2015) 44(1): 128-140.
[44] Zhi Li, Jiaowan Luo, Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion, Frontiers of Mathematics in China, 10(2): 303-321, 2015.
[45] Liping Xu, Zhi Li*, Zhishan Liu, The cordiality of the complement of a graph, Ars Combinatoria, 114: 293-298, 2014.
[46] Zhi Li, Jiaowan Luo, Kai Liu, On almost periodic mild solutions for neutral stochastic evolution equations with infinite delay, Nonlinear Analysis-TMA, 110: 182-190, 2014.
[47] Zhi Li, Jiaowan Luo, Reflected backward doubly stochastic differential equations with discontinuous coefficients, Acta Mathematica Sinica, English Series, 29(4): 639-650, 2013.
[48] Zhi Li, Jiaowan Luo, Mean-field reflected backward stochastic differential equations, Statistics and Probability Letters, 82: 1961-1968, 2012.
[49] Zhi Li, Jiaowan Luo, One barrier reflected backward doubly stochastic differential equations with discontinuous monotone coefficients, Statistics and Probability Letters, 82: 1841-1848, 2012.
四、获得的表彰及奖励
1. 融合耳蜗—神经元响应机制的听觉建模及信息处理关键技术研究, 2023年国家产学研合作创新成果奖三等奖,2/7。
五、出版的著作与教材