李治

一、基本信息

李治

最终学历

研究生博士

教授

副院长

博士(后)

电子邮件

lizhi_csu@126.com

通信地址

东校区8号楼505

邮政编码

434023

研究方向

随机分析与数理金融

社会职务

二、个人简历

1、学习简历

2010.9-2015.9,广州大学,应用数学,博士研究生

2007.9-2010.6,中南大学,概率论与数理统计,硕士研究生

2000.9-2004.6,长江大学,信息与计算科学,本科

2、工作简历

2023.01-至今 长江大学,教授

2016.03-2018.06 东华大学,博士后

2015.07-2022.12,   长江大学,副教授

2013.06-2015.06 长江大学,讲师

三、教学情况及成果

1、讲授的主要课程

 本科生课程:

《数学分析》、《高等代数》、《概率论与数理统计》;

研究生课程:

《随机过程》

2、承担的实践性教学任务
1)指导了本科生毕业论文,共20人。

2)指导本科生教学试讲,共25人。

3、主持及参与的教学研究项目

1)长江大学教研项目《数学专业概率论与数理统计课程教学改革研究》,主持人,2015年。

2)长江大学教研项目《复变函数教学课程改革研究》,参与人,2015年。

四、近几年的学术研究
1、承担的学术研究课题

1)中立型随机泛函微分方程的相关研究 (2017M610216),中国博士后基金一等资助,2017.012017.12,主持人

2)分数布朗运动驱动的随机泛函微分方程研究 2016CFB479),湖北省自然科学基金面上项目,2016.012018.12,主持人

3)由分形布朗运动驱动的随机时滞微分方程研究 (Q20141306),湖北省教育厅青年人才项目,20142016,主持人

2、发表的学术论文

[1] Zhi Li, Yuanyuan Jing, Liping Xu, Controllability of Neutral Stochastic Evolution Equations Driven by fBm with Hurst Parameter Less Than 1/2. International Journal of Systems Science, 50 (9), 2019, 1835-1846. SCI

[2]Zhi Li, Wentao Zhan, Liping Xu, Stochastic differential equations with time-dependent coefficients driven by fractional Brownian motion, Physica A: Statistical Mechanics and its Applications, Volume 530, 15 September 2019, 121565.SCI

[3]Zhi Li, On the existence of solutions for stochastic differential equations driven by fractional Brownian motion, Filomat, Accepted. SCI

[4] Zhi Li, Litan Yan, Stochastic averaging for two-time-scale stochastic partial differential equations with fractional Brownian motion, Nonlinear Analysis: Hybrid Systems, 31: 317-333, 2019. SCI

[5] Zhi Li, Liping Xu, Litan Yan, Weak solutions for stochastic differential equations with additive fractional noise, Stochastic and Dynamics, 19 (2), 2019, 1950017(16pages).  SCI

[6] Liping Xu, Zhi Li*,  Stochastic fractional evolution equations with fractional Brownian motion and infinite delay, Applied Mathematics and Computation,  336: 36-46, 2018. SCI

[7]Zhi Li, Litan Yan, Ergodicity and stationary solution for stochastic neutral retarded partial differential equations driven by fractional Brownian motion,Journal of Theoretical Probability, 32(3): 1399-1419, 2019.  SCI

[8] Zhi Li, Litan Yan and Xianghui Zhou, Global attracting sets and stability of  neutral stochastic functional differential equations  driven by Rosenblatt process, Frontiers of Mathematics in China, 13(1): 87-105, 2018.  SCI

[9] Zhi Li, Litan Yan, Harnack Inequalities for SDEs Driven by Subordinator Fractional Brownian Motion, Statistics and Probability Letters, 134: 45-53, 2018.SCI

[10] Xianghui Zhou, Jun Yang, Zhi Li, Dongbing Tong, p-th Moment synchronization of Markov switched neural networks driven by fractional Brownian noise, Neural Computing and Applications, 29: 823-836, 2018. SCI

[11] Zhi Li, Liping Xu and Litan Yan, Stepanov-like almost automorphic solutions for stochastic differential  equations with Levy noise, Communications in Statistics Theory and Methods, 47(6): 1350-1371, 2018. SCI

[12] Zhi Li and Wei Zhang, Stability in distribution of Stochastic Volterra-Levin equations,  Statistics and Probability Letters, 22: 20-27, 2017. SCI

[13] Zhi Li and Kai Liu, Global Attracting Set, Exponential Decay and Stability in Distribution  of Neutral SPDEs Driven bystable Processes, Discrete and Continuous Dynamical Systems B, 21(10): 3551-3573, 2016. SCI

[14] Zhi Li, Liping Xu and Xiong Li, On Time-Dependent Neutral Stochastic Evolution Equations with a Fractional Brownian Motion and  Infinite Delays, Bulletin of the Iranian Mathematical Society, 42(6): 479-1496, 2016. SCI

[15] Xianghui Zhou, Yang Jun,Zhi Li, Stability analysis based on partition trajectory approach for switched neural networks with fractional Brown noise disturbance, International Journal of Control, 90 (10). 2017.SCI

[16] Zhi Li, Global attractiveness and quasi-invariant sets of impulsive neutralstochastic functional differential equations driven by fBm, Neurocomputing, 177: 620-627, 2016.  SCI

[17]Zhi Li, Shift Harnack inequality and integration by parts formula for functional SDEs driven by fractional Brownian motion, Proceedings of the American Mathematical Society, 144: 2651-2659, 2016. SCI

[18] Zhi Li, Guoli Zhou and Jiaowan Luo, Stochastic delay evolution equations driven by sub-fractional Brownian motion, Advances in Difference Equations, (2015) 2015:48. SCI

[19] Liping Xu, Zhi Li* and Jiaowan Luo, Global attracting set and exponential decay of second-orderneutral stochastic functional differential equations driven by fBm, Advances in Difference Equations, (2017) 2017:134. SCI

[20]Zhi Li and Jiaowan Luo, Transportation inequalities for stochastic delay evolution equations driven by fractional Brownian motion, Frontiers of Mathematics in China, 10(2): 303-321, 2015.  SCI

[21] Liping Xu, Zhi Li*, Zhishan Liu, The cordiality of the complement of a graph, Ars Combinatoria, 114: 293-298, 2014. SCI

[22] Zhi Li, Jiaowan Luo and Kai Liu, On almost periodic mild solutions for neutral stochastic evolution equations with infinite delay, Nonlinear Analysis-TMA, 110: 182-190, 2014.SCI

[23]Zhi Li and Jiaowan Luo, Reflected backward doubly stochastic differential equations with discontinuous coefficients, Acta Mathematica Sinica, English Series, 29(4): 639-650, 2013.  SCI

[24] Zhi Li and Jiaowan Luo, Mean-field reflected backward stochastic differential equations, Statistics and Probability Letters, 82: 1961-1968, 2012. SCI

[25] Zhi Li and  Jiaowan Luo, One barrier reflected backward doubly stochastic differential equations with discontinuous monotone coefficients, Statistics and Probability Letters, 82: 1841-1848, 2012. SCI

五、获得教学表彰级奖励

12015年教学质量优秀奖,长江大学

22014-2015指导学生参加全国大学生数学竞赛获得一等奖;

六、出版的著作与教材

上一篇:宋银芳
下一篇:燕子宗