首页 学术信息

2017年信息与数学学院学术报告(十九)

报告题目:Well-Posedness for the Solutions of Navier-Stokes-Cahn-Hilliard system with General Navier Boundary Condition

报告人:施小丁  (北京化工大学  教授)
报告地点:8406
报告时间:20171023(周一)  16:30-1730

欢迎广大师生光临!

 

摘要We consider a model of a binary mixture of compressible viscous and macroscopically immiscible fluids, based on the diffuse interface approximation, which we called it as the Navier-Stokes-Cahn-Hilliard system. This system has strong nonlinear, degenerative and singularity. We will mainly study the generalized Navier boundary value problem for 3D barotropoic incompressible Navier-Stokes-Cahn -Hilliard system with several rigid bodies. The global existence of weak solutions is proved for the problem of the motion of several rigid bodies immersed in two immiscible incompressible shear-thinning non-Newtonian viscous fluid. The viscosity depends on the shear rate and the concentration of the fluids. The Navier-Stokes-Cahn-Hilliard system with the Generalized Navier oundary Conditions is considered. The fictitious domain method and the pressure localization method are used.

 

报告人简介:施小丁, 教授,1996年于中国科学院数学与系统科学研究院获得博士学位。1996年至今任教于北京化工大学,2005年至今为北京化工大学理学院教授。已经在国际高水平的学术期刊上发表论文40余篇,主持或参与多项国家自然科学基金项目。